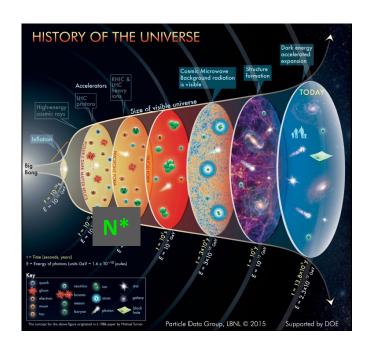
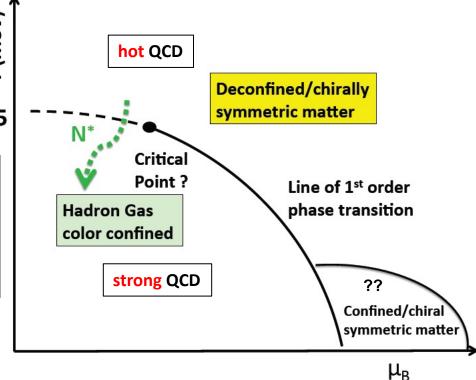

New Baryon State N'(1720)3/2+ from the CLAS $\pi^+\pi^-$ p Photo- and Electroproduction Data

V.I. Mokeev
Jefferson Laboratory



- Hadron spectra and emergence of the strong QCD regime
- New resonances from photoproduction
- New N'(1720)3/2+ state from analysis of $\pi^+\pi^-$ p photo-/electroproduction data
- Insight into "missing" resonance structure

Nucleon Resonances in the Emergence of Hadronic Matter

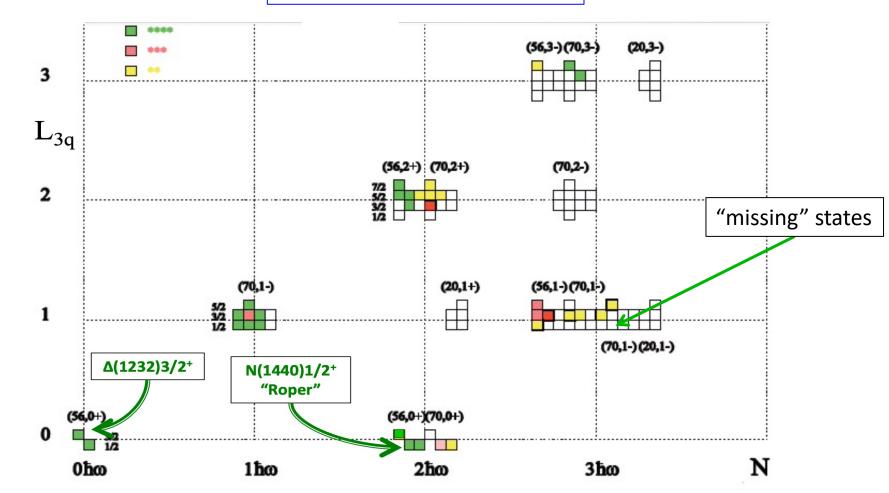


Dramatic events occurred in the micro-second old universe during the transition from the deconfined quark and gluon phase to the hadron phase.

(MeV) 155

- Quark-gluon confinement emerges
- Chiral symmetry of QCD is broken
- Quarks and gluons acquire mass
- Baryon resonances form

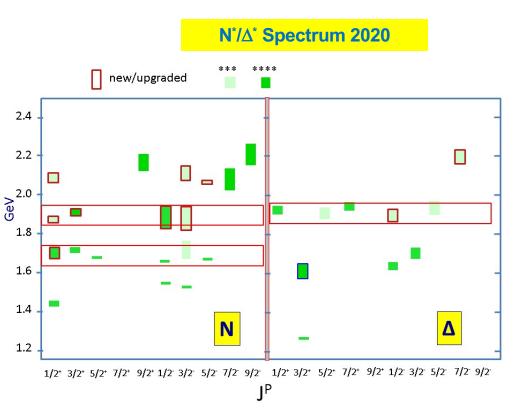
This transition was shaped by the full meson and baryon spectra



SU(6)xO(3) Spin-Flavor Symmetry and "Missing" Resonances

PDG2012 status

SU(6)×O(3)


Continuum QCD: C. Chen et al., PRD 100 (2019) 054009; Si-xue Qin et al., FBS 60 (2019) 26 Lattice QCD: R. Edwards et al., PRD 84 (2011) 074508

Studies of the N*-spectrum were driven by a guess for the ``missing" baryon states expected from underlying SU(6)xO(3) symmetry and supported by continuum lattice QCD results on the N*-spectrum

Advances in the Exploration of the N* Spectrum in Photoproduction

Several new nucleon resonances were established in a global multi-channel analysis of exclusive photoproduction data

Nucleon resonances	listed in Particle
Data Group (PDG) tak	oles

State N(mass)J ^P	PDG pre 2012	PDG 2020*
N(1710)1/2+	***	***
N(1880)1/2+		***
N(1895)1/2 ⁻		****
N(1900)3/2 ⁺	**	***
N(1875)3/2 ⁻		***
N(2100)1/2 ⁺	*	***
N(2120)3/2-		***
N(2000)5/2+	*	**
N(2060)5/2-		***
Δ(1600)3/2+	***	***
Δ(1900)1/2 ⁻	**	***
Δ(2200)7/2 ⁻	*	***

Description of the exclusive electroproduction data off the proton with the same masses and hadronic decay widths as in photoproduction will validate the existence of new baryon states.

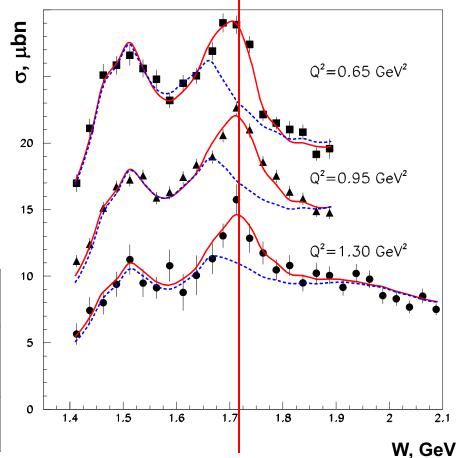
Combined studies of the CLAS $\pi^+\pi^-$ p photo-/electroproduction off proton data allow us to observe a new N'(1720)3/2+ baryon state in addition to those listed above.

Interpretation of the Structure at W~1.7 GeV in $\pi^+\pi^-$ p Electroproduction

M. Ripani et al., CLAS Collaboration Phys. Rev. Lett. 91, 022002 (2003)

conventional states only, consistent with PDG 02

implementing N'(1720)3/2+ candidate or only conventional states with different N(1720)3/2+ $N\pi\pi$ decays than in PDG 02

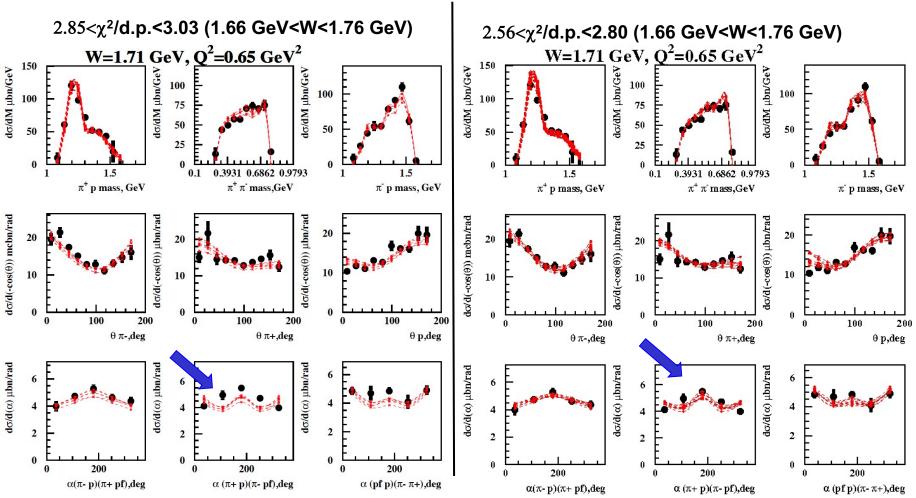

Two equally successful ways for the data description:

No new states, different than in PDG 02' $N(1720)3/2^+ N\pi\pi$ hadronic decay widths:

	$\Gamma_{ m tot,}$ MeV	BF(πΔ) %	BF(ρ p) %
N(1720)3/2 ⁺ decays fit to the CLAS Nππ data	126±14	64-100	<5
N(1720)3/2 ⁺ PDG 02'	150-300	<20	70-85

new N'(1720)3/2+ and regular N(1720)3/2+:

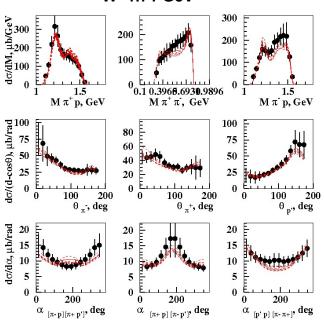
	$\Gamma_{tot,}MeV$	BF(πΔ) %	BF(ρ p) %		
N'(1720)3/2 ⁺ New	119±6	47-64	3-10.		
N(1720)3/2 ⁺ Conventional	112±8	39-55	23-49		



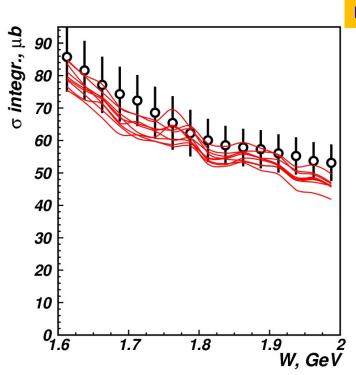
Analysis of the ep \rightarrow e' $\pi^+\pi^-$ p CLAS data at W~1.7 GeV in the JM model

Conventional N*-states with $\pi\Delta$, ρp couplings fit to the data

N'(1720)3/2+ candidate state is included in the fit



- Fit of θ_{π^-} , θ_{π^+} , θ_{n} angular distributions requires essential contribution(s) from $J^{\pi}=3/2^+$ resonance(s).
- Single state of $J^{\pi}=3/2^+$ should have major $\pi\Delta$ (>60%) and minor ρp (<5%) decays in order to reproduce pronounced Δ –peaks in π^+p and to avoid ρ -peak formation in the $\pi^+\pi^-$ mass distribution.



Description of the CLAS π⁺π⁻p Photoproduction off Protons Data with/without the New State N'(1720)3/2⁺

Fully integrated cross sections

E.N. Golovach et al., CLAS Collaboration, Phys. Lett. B 788, 371 (2019).

Almost the same quality of the photoproduction data description was achieved with and without the new N'(1720)3/2⁺ state:

Would it be possible to describe photo- and electroproduction data with Q²-independent resonance masses and total and partial hadron decay widths?

Evidence for the Existence of the New State N'(1720)3/2⁺ from Combined $\pi^+\pi^-$ p Analyses in both Photo- and Electroproduction

V.I. Mokeev et al., Phys. Lett. B 805, 135457 (2020)

19-69

N(1720)3/2⁺ hadronic decays from the CLAS data fit with conventional resonances only

	BF(πΔ), %	BF(ρ p), %		
	04.400	.=		
electroproduction	64-100	<5		

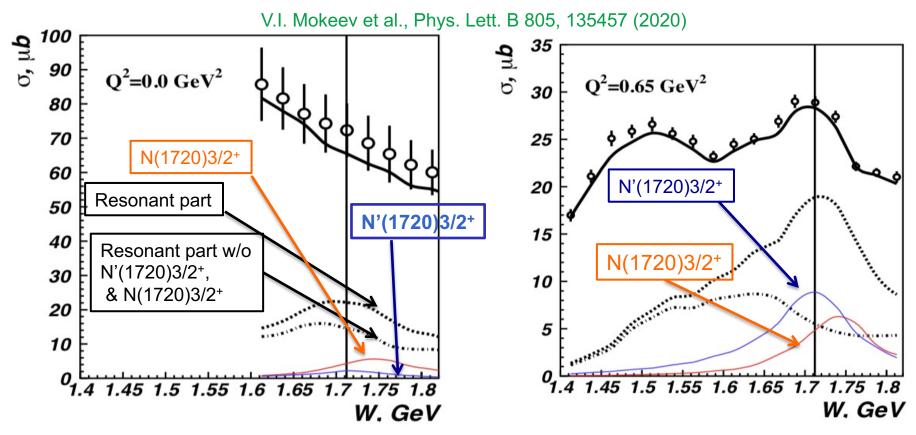
14-60

The contradictory BF values for N(1720)3/2⁺ decays to the $\pi\Delta$ and ρp final states deduced from photo- and electroproduction data make it impossible to describe the data with conventional states only.

N* hadronic decays from the data fit that incorporates the new N'(1720)3/2+ state

Resonance	BF(π∆), %	BF(ρp), %		
N'(1720)3/2 ⁺ electroproduction photoproduction	47-64 46-62	3-10 4-13		
N(1720)3/2 ⁺ electroproduction photoproduction	39-55 38-53	23-49 31-46		
∆(1700)3/2- electroproduction photoproduction	77-95 78-93	3-5 3-6		

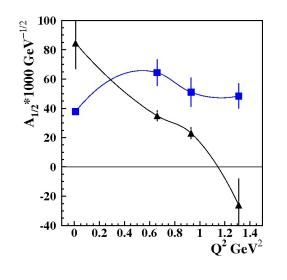
The successful description of the $\pi^+\pi^-p$ photoand electroproduction data achieved by implementing new N'(1720)3/2+ state with Q²-independent hadronic decay widths of all resonances contributing at W~1.7 GeV provides strong evidence for the existence of the new N'(1720)3/2+ state.

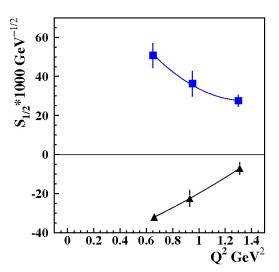


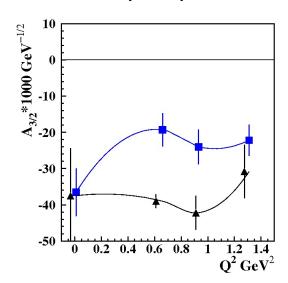
photoproduction

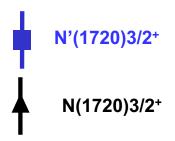
Newly Discovered N'(1720) 3/2+

$\pi^+\pi^-$ p electroproduction




Evidence of a new N'(1720) 3/2+ resonance in the photo- and electroproduction of the $\pi^+\pi^-p$ channel




The Parameters of the New N'(1720)3/2+ State from the CLAS Data Fit

The photo-/electrocouplings of the N'(1720)3/2⁺ and conventional N(1720)3/2⁺ states

Resonance	Mass, GeV	Total width, MeV		
N'(1720)3/2 ⁺	1.715-1.735	120±6		
N(1720)3/2 ⁺	1.743-1.753	112±8		

- N'(1720)3/2+ is the only new resonance for which data on electroexcitation amplitudes have become available.
- Gaining insight into the ``missing" resonance structure will shed light on their peculiar structural features that have made them so elusive, as well as on the emergence of new resonances from QCD.

SU(6)-Assignment for N'(1720)3/2+ and N(1720)3/2+

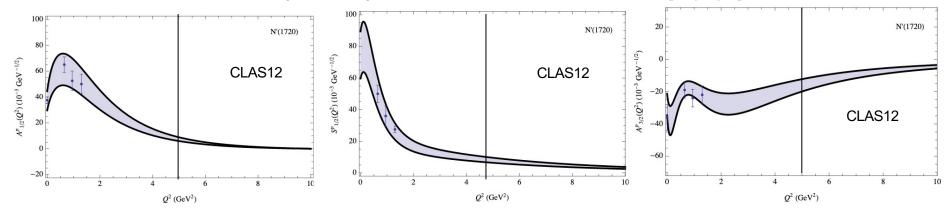
New resonances discovered from exclusive meson photoproduction data revealed the following pattern of the high-lying resonance spectrum under approximate SU(6)xO(3) symmetry

[70,2⁺] multiplet

$$S_q = 3/2 \qquad N(1880)1/2^+ \ N(1900)3/2^+ \ N(2000)5/2^+ \ N(2000)7/2^+ \\ M_{aver} (S_q = 3/2) = 1.96 \ GeV. \qquad \Delta M(S_q = 3/2) = 0.075 \ GeV \\ S_q = 1/2 \qquad \qquad N'(1720)3/2^+ \ N(1860)5/2^+ \\ \Delta M(S_q = 3/2 - S_q = 1/2)[70, 2^+] = \Delta M(S_q = 3/2 - S_q = 1/2)[70, 1^-] = 0.16 \ GeV$$

 $M_{aver}(S_q=1/2)=M_{aver}(S_q=3/2)-\Delta M(S_q=3/2-S_q=1/2)[70,2^+]=1.96-0.16=1.80~GeV$ $M(N'(1720)3/2^+)=M_{aver}(S_q=1/2)-\Delta M(S_q=3/2)=1.80-0.075=1.73~GeV~consistent~with$ the mass of N'(1720)3/2⁺ inferred from the $\pi^+\pi^-$ p photo-/electroproduction data.

 $N'(1720)3/2^{+}$: three constituent quarks of the total spin $S_q=1/2$ and of orbital momentum L=2 in [70,2⁺] multiplet, double orbital excitation


 $N(1720)3/2^{+}$: three constituent quarks of the total spin $S_q=1/2$ and of orbital momentum L=2 in [56,2⁺] multiplet

Quark model evaluation of $\gamma_v p N^*$ electrocouplings under the aforementioned assignments for N(1720)3/2⁺ and N'(1720)3/2⁺ states will shed light on peculiar features in N'(1720)3/2⁺ structure

Insight into the Structure of the New N'(1720)3/2+

Soft wall Ads/CFT, V.E. Lyubovitskij and I. Schmidt, e-Print:2009.07115 [hep--ph]

L	
$N \to N(1720)$	$g_{35}^{2A} = -11.58, g_{46}^{2A} = 34.50, g_{57}^{2A} = -22.60, g_{35}^{1B} = 79.15, g_{46}^{1B} = 67.11, g_{57}^{1B} = 29.95,$
	$g_{35}^{1C} = -36.53, g_{46}^{1C} = 105.65, g_{57}^{1C} = -58.59, g_{35}^{1D} = 0.16, g_{46}^{1D} = -0.47, g_{57}^{1D} = 0.31,$
	$g_{35}^{2E} = 12.14, \ g_{46}^{2E} = 10.29, \ g_{57}^{2E} = 4.59, \ g_{35}^{2F} = 5.56, \ g_{46}^{2F} = -16.07, \ g_{57}^{2F} = 8.91$
$N \rightarrow N'(1720)$	$g_{35}^{2A} = 30.18, g_{46}^{2A} = -54.02, g_{57}^{2A} = 24.82, g_{35}^{1B} = -1.15, g_{46}^{1B} = 6.41, g_{57}^{1B} = -2.87,$
	$g_{35}^{1C} = -17.77, \ g_{46}^{1C} = 107.19, \ g_{57}^{1C} = -62.71, \ g_{35}^{1D} = 8.48, \ g_{46}^{1D} = -15.18, \ g_{57}^{1D} = 6.97,$
	$g_{35}^{2E} = -0.60, g_{46}^{2E} = 3.37, g_{57}^{2E} = -1.51, g_{35}^{2F} = -3.57, g_{46}^{2F} = 21.56, g_{57}^{2F} = -12.61$

Leading/sub-leading contributions into N'(1720)3/2+ and N(1720)3/2+ are coming from the same/different AdS fields

- Checking [70,2+] and [56,2+] assignments for N'(1720)3/2+ and N(1720)3/2+, respectively (R.Bijker et al., Phys. Rev. D94, 074040 (2016), G.Ramalho, Few Body Syst. 59, 92 (2018)) from the results on γ_νpN* electrocouplings. If confirmed, discovery of N'(1720)3/2+ represents the first observation of the resonance with two non-zero orbital momenta I_λ and I₀ in three quark system.
- Alternative assignment of N'(1720)3/2⁺ as a member of 27-SU(3) baryon multiplet of chiral soliton model (G.-S. Yang and H.-C. Kim, PTEP, 093D01 (2019))

Conclusions and Outlook

- New N'(1720)3/2⁺ resonance has been observed in combined studies of $\pi^+\pi^-p$ photoand electroproduction data measured with CLAS in addition to several new, so-called "missing" nucleon resonances, from exclusive meson photo- and hadroproduction data
- New N'(1720)3/2+ state is the only `missing" resonance for which the results on Q²-evolution of γ_v pN* electrocouplings have become available. In the future, the information on the N'(1720)3/2+ electrocouplings from the CLAS data will be extended towards Q² up to 5.0 GeV²
- Combined studies of exclusive meson photo- and electroproduction will include the
 efforts on exploration of the N* spectrum with the CLAS12 detector including the
 hybrid-baryon search. The expected results are of particular importance in order to
 establish approximate strong QCD symmetries relevant of the N* spectrum generation,
 as well as to pin-down the exotic components in the N* structure.
- Analyses of the results on the new resonance electrocouplings in collaborative efforts with hadron structure theory will shed light on particular features of the ``missing" resonance structure which have made them so elusive for detection.

Back Up

12 GeV Era with the CLAS12 Detector

Physics run started successfully in February 2018

N^* studies at 0.05 $GeV^2 < Q^2 < 7.0 GeV^2$ with CLAS12

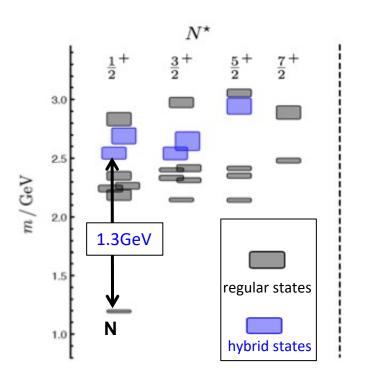
Hybrid Baryons E12-16-010	Search for hybrid baryons (qqqg) focusing on $0.05~\text{GeV}^2 < Q^2 < 2.0~\text{GeV}^2$ in mass range from 1.8 to 3 GeV in KA, N $\pi\pi$, N π (A. D'Angelo, et al.)
KY Electroproduction E12-16-010A	Study N* structure for states that couple to KY through measurements of cross sections and polarization observables that will yield Q² evolution of electrocoupling amplitudes at Q²<7.0 GeV² (D. Carman, et al.)

Approved by PAC44

Run Group conditions:

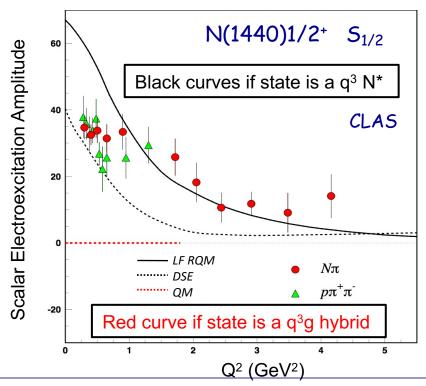
 $E_b = 6.6 \text{ GeV}, 50 \text{ days}$

 $E_b = 8.8 \text{ GeV}, 50 \text{ days}$


- •Polarized electrons, unpolarized LH₂ target
- L = $1x10^{35}$ cm⁻²s⁻¹

Hunting for Glue in Excited Baryons with CLAS12

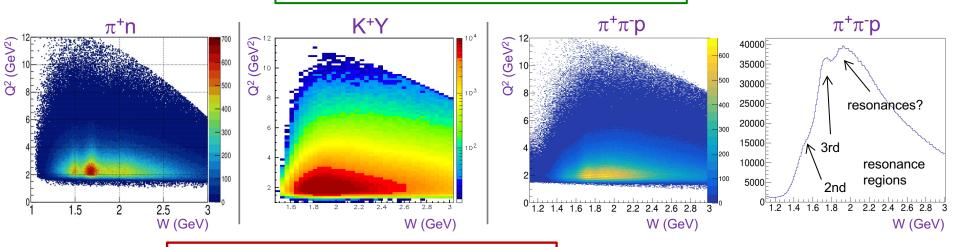
Can glue be a structural component to generate hybrid q³g baryon states?


Predictions of the N* spectrum from QCD show both regular q³ and hybrid q³g states

JLab LQCD group results

Search for hybrid baryons with CLAS12 in exclusive KY and $\pi^+\pi^-$ p electroproduction

LQCD and/or QM predictions on Q² evolution of the hybrid-baryon electroexcitation amplitudes are critical in order to establish the nature of a baryon state



N* Electroexcitation to High Q² with CLAS12

Expected outcome: The first results on the γ_{v} pN* electrocouplings of most N* states from data in the range W < 3.0 GeV and Q² > 5.0 GeV² for exclusive reaction channels: π N, $\pi\pi$ N, KY, KY*

kinematic coverage for RG-A data @ 10.6 GeV

Expected events per Q²/W bin for full RG-A dataset

π^+ n K+ Λ & K+ Σ^0			π ⁺ π ⁻ p							
Q² [GeV²]	W [GeV] 1.5-1.55	W [GeV] 1.7-1.75	Q² [GeV²]	W _∧ [GeV] 1.7-1.75	W _Σ [GeV] 1.7-1.75	W _∧ [GeV] 1.9-1.95	W _Σ [GeV] 1.9-1.95	Q² [GeV²]	W [GeV] 1.7-1.75	W [GeV] 1.9-1.95
			1.4-2.2	63417	6012	66564	33170			
			2.2-3.0	72144	5364	77443	28720			
5.2-5.8	15272	4175	3.0-4.0	52358	3945	51991	18936	5.2-5.8	2813	2808
5.8-6.5	10737	2637	4.0-5.0	24833	3103	26690	5925	5.8-6.5	1822	1969
6.5-7.2	7367	1684	5.0-6.0	11203	1598	11160	2642	6.5-7.2	1159	1294
7.2-8.1	4567	1290	6.0-7.0	5566	648	6300	943	7.2-8.1	661	924
8.1-9.1	2742	540	7.0-8.0	2606	338	3276	633	8.1-9.1	364	414
9.1-10.5	1453	194	8.0-9.0	1440	244	936	86	9.1-10.5	118	179

Collected data will extend the Q^2 range of the $\gamma_v p N^*$ electrocouplings to 8-10 GeV² for each of these channels

–Jefferson Lab –