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Interaction of strange baryons

ΛN and ΣN scattering
→ Role of SU(3) flavor symmetry

H dibaryon
Jaffe (1977)→ deeply bound 6-quark state with I = 0, J = 0, S = −2
many experimental searches but no convincing signal
Lattice QCD (2010)→ evidence for a bound H dibaryon (ΛΛ)

Few-body systems with hyperons: 3
ΛH, 4

ΛH, 4
ΛHe, ...

→ Role of three-body forces
large charge symmetry breaking 4

ΛH↔ 4
ΛHe

(Λ, Σ) hypernuclei and hyperons in nuclear matter
→ very small spin-orbit splitting: weak spin-orbit force

existence of Ξ hypernuclei
repulsive Σ nuclear potential

implications for astrophysics
→ stability/size of neutron stars

softening of equation of state (hyperon puzzle)
hyperon stars
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BB interaction in chiral effective field theory
Baryon-baryon interaction in SU(3) χEFT à la Weinberg (1990) [up to NLO]
Advantages:

Power counting
systematic improvement by going to higher order

Possibility to derive two- and three-baryon forces and external current operators
in a consistent way

• degrees of freedom: octet baryons (N, Λ, Σ, Ξ), pseudoscalar mesons (π, K , η)

• pseudoscalar-meson exchanges (V OBE , V TBE )
• contact terms – represent unresolved short-distance dynamics (V CT )

LO :

NLO :

LO: H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244

NLO: J.H., N. Kaiser, U.-G. Meißner, A. Nogga, S. Petschauer, W. Weise, NPA 915 (2013) 24
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BB interaction up to NLO
Pseudoscalar-meson exchange

V OBE
B1B2→B′1B′2

= −fB1B′1P fB2B′2P

(
~σ1 · ~q

) (
~σ2 · ~q

)
~q 2 + m2

P
, ~q = ~p′ − ~p

V TBE
B1B2→B′1B′2

= ...

fB1B′1P ... coupling constants fulfil standard SU(3) relations
mP ... mass of the exchanged pseudoscalar meson
SU(3) symmetry breaking due to the mass splitting of the ps mesons
(mπ = 138.0 MeV, mK = 495.7 MeV, mη = 547.3 MeV)

Contact interaction V CT - partial-wave projected

V (1S0) = C̃1S0
+ C1S0

(p2 + p′2)

V (3S1) = C̃3S1
+ C3S1

(p2 + p′2)

V (α) = Cα p p′ α =̂ 1P1,
3P0,

3P1,
3P2

V (3D1 ↔ 3S1) = C3S1− 3D1
p′2, C3S1− 3D1

p2

V (1P1 ↔ 3P1) = C1P1− 3P1
p p′

C̃’s, C’s ... low-energy constants (LECs) ... to be fixed from fit to data

Johann Haidenbauer Hyper-nucleon interaction



SU(3) structure of contact terms for BB
SU(3) structure for scattering of two octet baryons→
8 ⊗ 8 = 1 ⊕ 8a ⊕ 8s ⊕ 10∗ ⊕ 10 ⊕ 27

BB interaction can be given in terms of LECs corresponding to the SU(3)f irreducible
representations: C1, C8a , C8s , C10∗ , C10, C27

Channel I Vα Vβ Vβ→α
S = 0 NN → NN 0 – C10∗

β –

NN → NN 1 C27
α – –

S = −1 ΛN → ΛN 1
2

1
10

(
9C27

α + C8s
α

)
1
2

(
C8a
β + C10∗

β

)
−C8sa

ΛN → ΣN 1
2

3
10

(
−C27

α + C8s
α

)
1
2

(
−C8a

β + C10∗
β

)
−3C8sa

C8sa

ΣN → ΣN 1
2

1
10

(
C27
α + 9C8s

α

)
1
2

(
C8a
β + C10∗

β

)
3C8sa

ΣN → ΣN 3
2 C27

α C10
β –

α = 1S0,
3 P0,

3 P1,
3 P2, β = 3S1,

3 S1 −3 D1,
1 P1

No. of contact terms: LO: 2 (NN) + 3 (YN) + 1 (YY )
NLO: 7 (NN) + 11 (YN) + 4 (YY )

NB: ΛN, ΣN→ 10 LECs in S waves relevant at low energies
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Coupled channels Lippmann-Schwinger Equation

Tν
′ν,J

ρ′ρ (p′, p) = Vν
′ν,J

ρ′ρ (p′, p)

+
∑
ρ′′,ν′′

∫ ∞
0

dp′′p′′2

(2π)3
Vν
′ν′′,J

ρ′ρ′′ (p′, p′′)
2µρ′′

p2 − p′′2 + iη
Tν
′′ν,J

ρ′′ρ (p′′, p)

ρ′, ρ = ΛN, ΣN (ΛΛ, ΞN, ΛΣ, ΣΣ)

LS equation is solved for particle channels (in momentum space)

Coulomb interaction is included via the Vincent-Phatak method

The potential in the LS equation is cut off with the regulator function:

Vν
′ν,J

ρ′ρ (p′, p)→ f Λ(p′)Vν
′ν,J

ρ′ρ (p′, p)f Λ(p); f Λ(p) = e−(p/Λ)4

consider values Λ = 500 - 650 MeV [guided by NN, achieved χ2]

ideally the regulator (Λ) dependence should be absorbed completely by the LECs
in practice there is a residual regulator dependence (shown by bands below)
• tells us something about the convergence
• tells us something about the size of higher-order contributions
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YN integrated cross sections
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Σ−
p -> Λn

NLO13 ... all S-wave LECs are fixed from a fit directly to available YN data
NLO19 ... consider constraints from the NN interaction within (broken) SU(3) symmetry

NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24

NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

Jülich ’04: J.H., U.-G. Meißner, PRC 72 (2005) 044005

Nijmegen NSC97f: T.A. Rijken et al., PRC 59 (1999) 21

data points included in the fit are represented by filled symbols!
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YN integrated cross sections
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Σ+
p -> Σ+

p

NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24

NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

Jülich ’04: J.H., U.-G. Meißner, PRC 72 (2005) 044005

quality of the fit – total χ2 (36 data points):

NLO13: 15.7 · · · 16.8 NLO19: 16.0 · · · 18.1 Jülich ’04: ≈ 22
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Difference between NLO13 and NLO19
Different coupling strength between the ΛN and ΣN channels (VΛN↔ΣN )
consequences for in-medium properties:
ΛN–ΣN coupling is suppressed for increasing number of nucleons

dispersive effects in few-body systems:

N Λ N

N Λ N

Λ✉ ✉
✉ ✉

N Λ N

N Λ N

Σ✉ ✉
✉ ✉

N Λ N

N Λ N

Σ✉ ✉
✉✉

V eff
ΛN (E) ≈ VΛN + VΛN→ΣN

1
E−H0

VΣN→ΛN

(propagator includes the energy of the spectator nucleons!)

Pauli blocking effects in nuclear matter:
V eff

ΛN (ε) ≈ VΛN + VΛN→ΣN
Q

ε−H0
VΣN→ΛN

EFT: in consistent few- and many-body calculations, differences in the two-body
potential (in the ΛN–ΣN coupling) are to be compensated by many-body forces

→ tool for estimating effects from three-body forces!
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3- and many-body forces in chiral EFT (E. Epelbaum)4 E. EpelbaumNuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

(short-range loop contribu-
tions still to be worked out)

have not been worked 
out yet

Nuclear χEFT in the Precision Era Evgeny Epelbaum
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4
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Figure 2: Chiral expansion of the nuclear forces. Solid and dashed lines refer to
nucleons and pions. Solid dots, filled circles, filled squares, crossed squares and open
squares denotes vertices from the effective chiral Lagrangian of dimension ∆ = 0, 1,
2, 3 and 4, respectively.

and nucleons as the only explicit degrees of freedom and utilizing the rules of naive
dimensional analysis for few-nucleon contact operators, see [31–33] for alternative pro-
posals. We remind the reader that all diagrams shown in this and following figures
correspond to irreducible parts of the scattering amplitude and to be understood as
series of all possible time-ordered-like graphs for a given topology. As already ex-
plained before, the precise meaning of these diagrams and the resulting contributions
to the nuclear forces are scheme dependent.

The nucleon-nucleon potential has been calculated to fifth order (N4LO) in the
chiral expansion using dimensional regularization [24,34–41]. The expressions for the
leading and subleading 3NF can be found in Refs. [42–46] and [26, 27], respectively.
Apart from the contributions involving NN contact interactions, which still have to
be worked out, the N4LO terms in the 3NF can be found in Refs. [29, 47, 48]. The
leading contribution to the four-nucleon force (4NF) appears at N3LO and has been
derived in Refs. [26,27]. It is important to emphasize that the long-range parts of the
nuclear forces are completely determined by the spontaneously broken approximate
chiral symmetry of QCD along with the experimental and/or empirical information
on the pion-nucleon system needed to determined the relevant LECs in the effective
Lagrangian. In this sense, the long-range contributions to the nuclear forces and cur-
rents can be regarded as parameter-free predictions. Given that the chiral expansion
of the NN contact operators in the isospin limit contains only contributions at orders
Q2n, n = 0, 1, 2, . . ., the N2LO and the isospin-invariant N4LO corrections to the NN
potential are parameter-free. This also holds true for the N3LO contributions to the
3NF and 4NF. For calculations utilizing a formulation of chiral EFT with explicit

different hierarchy of 3BFs
for other counting schemes
(Hammer, Nogga, Schwenk,
Rev. Mod. Phys. 85 (2013) 197)

21

pionless chiral chiral+∆

LO — —

NLO — —

N2LO

FIG. 23 Order of 3NF contributions in pionless and chiral EFT and in EFT with explicit ∆ degrees of freedom (chiral+∆).
Open vertices in the last column indicate the differences of the low-energy constants in chiral and chiral+∆ EFT.

lengths, subleading three-body forces are suppressed by
two orders and enter only at N2LO. Some higher-order
calculations of few-nucleon observables exist but much
remains to be investigated in this sector. Particularly
interesting are the application of pionless EFT to halo
nuclei and low-energy electroweak reactions. Halo nuclei
are the most promising candidates for observing Efimov
physics in nuclei, while precise calculations of low-energy
reactions are relevant for nuclear astrophysics and neu-
trino physics. In particular, 3NFs play a prominent role
in two-neutron halo nuclei and larger halo systems. Pio-
nless EFT also predicts universal three-body correlations
that can be explored in nuclear reactions in this regime
and to test the consistency of different theoretical calcu-
lations (similar to the Tjon line/band).

In chiral EFT discussed in Sections IV, V and VI,
3NFs are suppressed compared to NN interactions. This
explains the phenomenological success of weaker three-
body forces of the Fujita-Miyazawa type. As summarized
in Fig. 23, 3NFs enter at N2LO, and their relative contri-
butions to observables can be understood based on the
power counting. Because the operator structure of the
leading 3NFs is strongly constrained, a global analysis
of few-body scattering and bound-state data with theo-
retical uncertainties appears feasible in the framework of
chiral EFT. This would allow for a determination of the
long-range ci couplings in the three-body sector. In addi-
tion, a consistent determination of two- and three-body
forces from such an analysis may help to resolve the Ay

puzzle in few-body scattering.
For applications of chiral EFT interactions to nuclear

structure, 3NFs play a central role, as discussed for light
and medium-mass nuclei and for nuclear matter. For
these many-body calculations, the RG/SRG evolution
leads to greatly improved convergence. A consistent evo-
lution of chiral 3NFs has been achieved in a harmonic-
oscillator basis and recently in momentum space. Impor-
tant open problems are an understanding of the 3NFs
induced by the SRG and to control higher-body forces,

which is necessary for the desired accuracy in nuclear
structure.

If ∆(1232) degrees of freedom are included, part of
the physics contained in the low-energy constants in chi-
ral EFT is made explicit in lower orders. As a conse-
quence, a 3NF of the Fujita-Miyazawa type appears al-
ready at NLO as shown in Fig. 23. Improved convergence
of the chiral expansion with explicit ∆ degrees of free-
dom is expected, but a full analysis of few-nucleon data
remains to be carried out. In addition, a chiral EFT
with explicit ∆’s would naturally explain why the con-
tributions from the long-range two-pion-exchange parts
of 3NFs dominate over the shorter-range parts in appli-
cations to neutron-rich nuclei and nuclear matter.

Three-nucleon forces are a frontier in the physics of nu-
clei that connects the systematic development of nuclear
forces in chiral EFT with the exploration of neutron-rich
nuclei at rare isotope beam facilities. The subleading
3NFs at N3LO are predicted in chiral EFT, without free
parameters, as is the case for N3LO 4N forces. In many
present calculations, the uncertainty of the leading 3NFs
likely dominates the theoretical uncertainties of the pre-
dicted observables. The derivation of N3LO 3NFs has
only been completed recently, and no calculation exists
with N3LO 3N or 4N forces beyond few-body systems.
Therefore, there is a window of opportunity to make key
discoveries and predictions. In addition to advancing mi-
croscopic calculations with 3NFs to larger and neutron-
rich nuclei, an important problem is to understand the
impact of 3NFs on global nuclear structure predictions,
e.g., for key regions in the r-process path where system-
atic theoretical predictions of extreme nuclei, often not
accessible in the laboratory, are needed.

Electroweak interaction processes are unique probes of
the physics of nuclei and fundamental symmetries, and
play a central role in astrophysics. Chiral EFT provides
a systematic basis for nuclear forces and consistent elec-
troweak currents, where pion couplings contribute both
to electroweak currents and to 3NFs. This opens up
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Three-body forces

• SU(3) χEFT 3BFs nominally at N2LO (S. Petschauer et al., PRC 93 (2016) 014001)

• not included in present (NLO) calculation!

SU(3) χEFT : (at LO!) :

Three-body forces

N Λ N

N Λ N

u y u

N Λ N

N Λ N

u y

N Λ N

N Λ N

y

(a) (b) (c)

N Λ N

N Λ N

Σ∗u u
u u

N Λ N

N Λ N

Σu u
u u

(d) (e)

(a) - (c) appear at N2LO
(d) appears at NLO – in EFT that includes decuplet baryons

(e) is already included by solving coupled-channel Faddeev equations

Johann Haidenbauer Baryon-baryon interactions

solve coupled channel (ΛN-ΣN) Faddeev-Yakubovsky equations:
⇒ ΛNN “3BF” from Σ coupling is automatically included
remaining 3BF expected to be moderate

• ΛNN 3BF via Σ∗ excitation in SU(3) χEFT with {10} baryons (NLO)

estimate ΛNN 3BF based on the Σ∗(1385) excitation (S. Petschauer et al., NPA 957 (2017) 347)
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Hypertriton (Faddeev calculation by A. Nogga)
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(separation energy EΛ = BΛ − Bd = 0.13± 0.05 MeV (M. Jurič et al., 1973))

• B(3
ΛH) is used as additional constraint in EFT and Jülich ’04

Λp data alone do not allow to disentangle 1S0 (s) and 3S1 (t) contributions
• cutoff variation:
* NNN → is lower bound for magnitude of higher order contributions
* ΛNN - correlation with χ2 of YN interaction
⇒ effect of three-body forces small?

� STAR (J. Adam et al., Nature Phys. 16 (2020) 409) (3ΛH+3
Λ̄

H̄): 0.41± 0.12± 0.11 MeV !?

(NN potential: SMS N4LO+ (450) (P. Reinert et al., EPJA 54 (2018) 86))
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Status - 4
ΛH, 4

ΛHe

The 4
ΛH–4

ΛHe complex & CSB since 2015
MAMI’s A1, 4

ΛH→4He+π−, PRL 114 (2015) 232501
J-PARC’s E13, 4He(K−, π−γ), PRL 115 (2015) 222501

CSB due to Λ-Σ0 mixing, strongly spin dependent,

dominantly in 0+
g.s., large w.r.t. ≈−70 keV in 3H-3He.

Re-measure 4
ΛHeg.s. (E13 → E63).

12

large CSB in 0+ (∆ ≈ 233 keV), small CSB in 1+ (∆ ≈ −83 keV)

F. Schulz et al. [A1 Collaboration] (2016), T.O. Yamamoto et al. [J-PARC E13 Collaboration] (2015)
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4
ΛHe results (Faddeev-Yakubovsky – by A. Nogga)
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4
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• LO: unexpected small cutoff dependence in 0+ result
• NLO: underbinding in χEFT and for phenomenological potentials
• possible effects of long ranged three-body forces?

(no CSB in χEFT YN potentials!)
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Estimation of 3BFs based on NLO results

3
Λ H
(a) cutoff variation: ∆EΛ (3BF) ≤ 50 keV
(b) “3BF” from ΛN-ΣN coupling:

switch off ΛN-ΣN coupling
in Faddeev-Yakubovsky equations:
∆EΛ (3BF) ≈ 10 keV
expect similar/smaller ∆EΛ from Σ∗(1385) excitation

N Λ N

N Λ N

Λ✉ ✉
✉ ✉

N Λ N

N Λ N

Σ✉ ✉
✉ ✉

(a) (b)

N Λ N

N Λ N

Σ✉ ✉
✉✉

N Λ N

N Λ N

Σ∗✉ ✉
✉ ✉

(c) (d)

(c) 3H: 3NF ∼ Q3 |〈VNN〉|3H ∼ 650 keV
( |〈VNN〉|3H ∼ 50 MeV; Q ∼ mπ/Λb ; Λb ' 600 MeV )

3
Λ H: |〈VΛN〉|3

Λ
H ∼ 3 MeV→ ∆EΛ (3BF) ≈ Q3 |〈VΛN〉|3

Λ
H ' 40 keV

4
Λ H, 4

Λ He
(a) cutoff variation: ∆EΛ (3BF) ≈ 200 keV (0+) and ≈ 300 keV (1+)
(b) “3BF” from ΛN-ΣN coupling:
∆EΛ (3BF) ≈ 230− 340 keV (0+), ≈ 150− 180 keV (1+)

3
Λ H and 4

Λ H(He) calculations with explicit inclusion of 3BFs are planned for the future
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density dependent effective YN interaction

(for application to heavy hypernuclei and hyperons in infinite nuclear matter)
three-body force:

⇒ density dependent effective YN interaction:

...

close two baryon lines by sum over occupied states within the Fermi sea
arising 3BF LECs can be constrained by resonance saturation (via decuplet baryons)
(→ 1 for ΛNN, 2 for ΣNN, ΞNN, ...)

J.W. Holt, N. Kaiser, W. Weise, PRC 81 (2010) 064009 (for NNN)
S. Petschauer et al., NPA 957 (2017) 347 (for ΛNN)
D. Gerstung et al., EPJA 56 (2020) 175 (ΛNN, ΣNN)
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Implications for neutron stars (incl. chiral 3BF)

D. Gerstung et al.,
EPJA 56 (2020) 175
(NLO13 & NLO19; ΛNN, ΣNN)

UΛ ... Λ single-particle potential
(UΛ(ρ0 = 0.17 fm−3) ≈ −28 · · · − 30 MeV)
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Fig. 7 Single-particle potentials UΛ(p = 0; ρ) of a Λ hyperon in
dense symmetric nuclear matter (left) and neutron matter(right), based
on self-consistent solutions of Eqs. (15) and (17) computed up to
ρ = 3.5 ρ0 using the NLO13 interaction, and further extrapolated to

higher densities as described in the text. The uncertainty bands reflect
cutoff dependence and choices of (H1, H2) from the lower solid seg-
ments of the NLO13 lines of Fig. 6
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Fig. 8 Comparison of Λ and neutron chemical potentials, μΛ and μn ,
in neutron star matter up to baryon densities typically encountered in
the center of neutron stars. The neutron chemical potential is derived
from the equation-of-state calculated in ref. [10] using chiral SU(2)
nucleon-meson field theory combined with functional renormalization
group methods. The uncertainty band reflects primarily the errors in

the nuclear symmetry energy Esym = 32 ± 3 MeV. The Λ chemical
potential is based on UΛ as in Fig. 7, calculated using the chiral SU(3)
interactions NLO13 (left panel) and NLO19 (right panel) with full two-
and three-body forces (ΛN +ΛNN ) and sets of three-body parameters
as explained in the text. The dashed line shows μΛ using two-body Y N
interactions only

The comparison of μΛ and μn is shown in Fig. 8. The
uncertainty band of the neutron chemical potential is related
primarily to the range of possible values of the nuclear sym-
metry energy, Esym = (32 ± 3) MeV. We note that this
uncertainty band also includes μn as given in Ref. [8] for
their maximally repulsive interaction (AV18+δv + UIX*) up
to ρ � 4 ρ0.

Figure 8 points out that the combined repulsion from
two- and three-body hyperon–nuclear interactions for both
NLO13 and NLO19 cases can indeed be potentially strong
enough to avoid the appearance of Λ hyperons in neutron
stars. One finds μΛ > μn throughout the neutron star density
range when a set of three-body parameters is selected from
the solid segments of the lines in Fig. 6 that are constrained
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Chemical potentials of the Λ hyperon (µΛ) and the neutron (µn)
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interactions only

The comparison of μΛ and μn is shown in Fig. 8. The
uncertainty band of the neutron chemical potential is related
primarily to the range of possible values of the nuclear sym-
metry energy, Esym = (32 ± 3) MeV. We note that this
uncertainty band also includes μn as given in Ref. [8] for
their maximally repulsive interaction (AV18+δv + UIX*) up
to ρ � 4 ρ0.

Figure 8 points out that the combined repulsion from
two- and three-body hyperon–nuclear interactions for both
NLO13 and NLO19 cases can indeed be potentially strong
enough to avoid the appearance of Λ hyperons in neutron
stars. One finds μΛ > μn throughout the neutron star density
range when a set of three-body parameters is selected from
the solid segments of the lines in Fig. 6 that are constrained

123

µΛ(ρ) ≤ µn(ρ)⇒ energetically favorable to replace n by Λ (µΛ(ρ) = MΛ + UΛ(ρ))

Equation-of-state becomes too soft to support 2 M� neutron stars (“hyperon puzzle”)
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Implications for neutron stars (incl. chiral 3BF)

Logoteta, Vidaña, Bombaci,
EPJA 55 (2019) 207
(Nijmegen NSC97 potentials)

Composition and EoS
of neutron star matter
(nB ≡ ρ)
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Fig. 1. (Color on-line) Single particle potentials for the Λ
hyperon in symmetric nuclear matter at saturation density
(n0 = 0.16 fm−3) with and without the NNΛ force.
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Fig. 2. (Color on-line) UΛ(0) as a function of the baryonic
density nB in symmetric nuclear matter with and without the
NNΛ force.

density. Results for the NSC97a (NSC97e) NΛ interac-
tion are presented in the left (right) panel together with
those including the effect of the NNΛ force. Note that
both the NSC97a and NSC97e models (with no NNΛ in-
teraction) predict a value of the Λ single-particle poten-
tial at zero momentum of about −40MeV, much lower
than the empirical value extrapolated from hypernuclear
data [56]. Note also that the NSC97a model predicts more
attraction than the NSC97e one over the whole range of
momenta. This does not change adding the NNΛ force.
The repulsive effect of the NNΛ interaction is even more
clear looking at fig. 2 where UΛ(0) in symmetric nuclear
matter is shown as a function of the baryonic density nB .
Note that UΛ(0) is very deep when only two body inter-
actions are considered and it shows a minimum located
at nB ∼ 0.4 fm−3 and nB ∼ 0.3 fm−3 for the NSC97a and
NSC97e models, respectively. The inclusion of the NNΛ in-
teraction induces repulsion for densities larger than about
0.1 fm−3 and it shifts this minimum to a value of the den-
sity around 0.16 fm−3 for all the models considered. As
expected, the effect of YTBF is almost negligible in the
low density region.
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Fig. 3. (Color on-line) Composition (left panel) and EoS (right
panel) of β-stable neutron star matter for models NSC97a (con-
tinuous lines) and NSC97a+NNΛ1 (dashed lines). The EoS of
the pure nucleonic EoS is also shown for comparison.

In order to perform the calculation of the β-stable neu-
tron star matter EoS one has to find for each value of the
total baryonic density nB = nn +np +nΛ the values of the
particle concentration Yi = ni/nB that fulfill the chemical
equilibrium equations:

μn − μp = μe, μn = μΛ, μe = μμ. (1)

Note that, besides nucleons and leptons, we have consid-
ered here only the Λ and have ignored the possible appear-
ance of other hyperons. The reason is that this is a first
exploratory work where we are just interested on the role
of the NNΛ force. A more complete study of the effect of
YTBF in neutron stars requieres, of course, the inclusion
of the other hyperon species and their interactions. This,
however, is left for a future work. In addition, the charge
neutrality condition, np = ne + nμ, should hold. In these
equations μi and ni are, respectively, the chemical poten-
tial and number density of the i-th species. The chemical
potential is calculated according to the usual thermody-
namical relation: μi = ∂ε

∂ni
where ε is the energy density.

The composition of β-stable neutron star matter is
shown in the left panel of fig. 3 for the models NSC97a
and NSC97a+ NNΛ1. Qualitatively similar results are ob-
tained for the other models which are not shown for sim-
plicity. The continuous lines show the results when only
NΛ, in addition to NN and NNN forces, are taken into
account whereas the dashed ones include also the contri-
bution of the NNΛ force. The effect of the latter is twofold.
First it shifts the onset of the Λ-hyperon to slightly larger
baryonic densities. The second effect, maybe the most
important one, is that the NNΛ force strongly reduces
the abundance of Λ particles at large baryonic densities
with the consequent stiffening of the EoS compared to
the case in which the NNΛ force is not included, as it
can be seen in the right panel of the figure, where the to-
tal pressure P is show as a function of the total energy
density ε. Consequently, the mass of the neutron star,
and in particular its maximum value, increases. This is
shown in fig. 4 where it is plotted the mass-radius relation

Mass-radius relation without and with chiral ΛNN force
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Fig. 4. (Color on-line) Mass-radius relation sequences for all
the models considered. Results for pure nucleonic stars are
shown for comparison. The observed masses of the pulsars PSR
J0348+0432 [31] and PSR J0740+6620 [32] are also shown. The
bands indicate the error of the observation.

for the models NSC97a and NSC97e with and without
the inclusion of the NNΛ force obtained by solving the
well known Tolman-Oppenheimer-Volkoff equations. The
black line corresponds to the case of pure nucleonic matter
shown as a reference. It is remarkable that the maximum
masses obtained including the NNΛ force are compati-
ble with the largest measured masses of ∼ 2M� [29–32].
This is in agreement with the calculation performed in
ref. [11]. Notice that the result of our present calculations
are based on a more realistic description of neutron star
matter compared to the one given in ref. [11] (pure neu-
tron matter plus a finite concentration of Λ hyperons). In
addition, we use more realistic interactions both in the
nucleonic and the hyperonic sectors than the ones used in
ref. [11]. Note also that, although the concentration of the
Λs is strongly reduced due to the effect of the NNΛ force,
they are still present in the interior of a 2M� neutron
star. This differs from what is concluded in ref. [11] where
it was found that the only NNΛ force able to produce a
EoS stiff enough to support maximum masses compatible
with the recent observation of 2M� neutron stars leads to
the total disappearance of Λ hyperons in the core of these
objects.

The neutron star properties, mass, radius and cen-
tral baryonic density, for the maximum mass configura-
tion are summarized in table 3. Note that models which
do not account for the NNΛ interaction provide very low
neutron star maximum masses between 1.3–1.5M�. This
is in agreement with several calculations performed by
various research groups using different many-body meth-
ods [23–27].

4 Conclusions

We have studied the effects of a hyperonic NNΛ force
derived by the Jülich-Bonn-Munich group in χEFT at

Table 3. Neutron star properties, mass (Mmax), radius (R)
and central baryonic density (nc), for the maximum mass con-
figuration for the different models considered. Results for a
pure nucleonic star are shown for comparison.

Mmax(M�) R (km) nc (fm−3)

Nucleonic 2.08 10.26 1.15

NSC97a 1.31 10.60 1.40

NSC97a+NNΛ1 1.96 9.80 1.30

NSC97a+NNΛ2 1.97 9.87 1.28

NSC97e 1.54 10.81 1.18

NSC97e+NNΛ1 2.01 10.10 1.20

NSC97e+NNΛ2 2.02 10.15 1.19

N2LO [50] in neutron stars and some single-Λ hypernu-
clei. We have calculated the EoS and structure of neutron
stars within the many-body BHF approach using in addi-
tion to the NNΛ force realistic NN, NNN and NΛ interac-
tions. In particular, we have used the chiral NN and NNN
interactions derived by Piarulli et al., and Epelbaum et
al. in refs. [39] and [40], respectively. For the NΛ, instead,
we have employed the NSC97a and NSC97e models de-
veloped by the Nijmegen group within the framework of
meson-exchange theory in refs. [48,49]. The reason for the
use of this NΛ interaction is simply the fact that we do not
have presently at our disposal the chiral NΛ interaction
derived by the Jülich-Bonn-Munich group in refs. [45–47].
This represents a weak point of the present work that,
however, we will try to solve in the future. After adjust-
ing the NNΛ force to reproduce the binding energy of the
Λ-hyperon in symmetric nuclear matter at saturation den-
sity, we have calculated the Λ separation energy in 41

Λ Ca,
91
Λ Zr and 209

Λ Pb. We have found that whereas the agree-
ment between the calculated separated energy and the ex-
perimental data improves in the case of the heavier nuclei
when the effect of the NNΛ is included, this force results to
be too much repulsive in the case of 41

Λ Ca and the lighter
hypernuclei. We note, however, that all the finite hypenu-
clei results were obtained without refitting the NNΛ force
and that a better agreement with experimental data for
the lighter hypernuclei could be found if the force is ad-
justed individually to each hypernucleus. Finally, we have
calculated the neutron star composition and EoS and have
determined the maximum mass predicted by the different
models considered. Our results have shown that when the
NNΛ force is included, the EoS becomes stiff enough such
that the resulting maximum mass is compatible with the
largest measured neutron star maximum mass of ∼ 2M�.
However, we have ignored the possible presence of other
hyperon species in the neutron star interior that could
change this conclusion, although we should point out that
hypothetical repulsive NNY, NYY and YYY forces could
lead to a similar one. Unfortunately, the lack of experimen-
tal information prevents currently any realistic attempt to
estimate the effect of such forces. More experimental ef-
forts are, therefore, needed. In particular, new information

Eur. Phys. J. A (2019) 55: 207 Page 5 of 7

10 11 12 13 14 15
R [km]

0

0.5

1

1.5

2

2.5

M
/M

su
n

NSC97e
NSC97a+NN
NSC97e+NN
Nucleonic
NSC97a

PSR J0348+0432

PSR J0740+6620

Fig. 4. (Color on-line) Mass-radius relation sequences for all
the models considered. Results for pure nucleonic stars are
shown for comparison. The observed masses of the pulsars PSR
J0348+0432 [31] and PSR J0740+6620 [32] are also shown. The
bands indicate the error of the observation.

for the models NSC97a and NSC97e with and without
the inclusion of the NNΛ force obtained by solving the
well known Tolman-Oppenheimer-Volkoff equations. The
black line corresponds to the case of pure nucleonic matter
shown as a reference. It is remarkable that the maximum
masses obtained including the NNΛ force are compati-
ble with the largest measured masses of ∼ 2M� [29–32].
This is in agreement with the calculation performed in
ref. [11]. Notice that the result of our present calculations
are based on a more realistic description of neutron star
matter compared to the one given in ref. [11] (pure neu-
tron matter plus a finite concentration of Λ hyperons). In
addition, we use more realistic interactions both in the
nucleonic and the hyperonic sectors than the ones used in
ref. [11]. Note also that, although the concentration of the
Λs is strongly reduced due to the effect of the NNΛ force,
they are still present in the interior of a 2M� neutron
star. This differs from what is concluded in ref. [11] where
it was found that the only NNΛ force able to produce a
EoS stiff enough to support maximum masses compatible
with the recent observation of 2M� neutron stars leads to
the total disappearance of Λ hyperons in the core of these
objects.

The neutron star properties, mass, radius and cen-
tral baryonic density, for the maximum mass configura-
tion are summarized in table 3. Note that models which
do not account for the NNΛ interaction provide very low
neutron star maximum masses between 1.3–1.5M�. This
is in agreement with several calculations performed by
various research groups using different many-body meth-
ods [23–27].

4 Conclusions

We have studied the effects of a hyperonic NNΛ force
derived by the Jülich-Bonn-Munich group in χEFT at

Table 3. Neutron star properties, mass (Mmax), radius (R)
and central baryonic density (nc), for the maximum mass con-
figuration for the different models considered. Results for a
pure nucleonic star are shown for comparison.

Mmax(M�) R (km) nc (fm−3)

Nucleonic 2.08 10.26 1.15

NSC97a 1.31 10.60 1.40

NSC97a+NNΛ1 1.96 9.80 1.30

NSC97a+NNΛ2 1.97 9.87 1.28

NSC97e 1.54 10.81 1.18

NSC97e+NNΛ1 2.01 10.10 1.20

NSC97e+NNΛ2 2.02 10.15 1.19

N2LO [50] in neutron stars and some single-Λ hypernu-
clei. We have calculated the EoS and structure of neutron
stars within the many-body BHF approach using in addi-
tion to the NNΛ force realistic NN, NNN and NΛ interac-
tions. In particular, we have used the chiral NN and NNN
interactions derived by Piarulli et al., and Epelbaum et
al. in refs. [39] and [40], respectively. For the NΛ, instead,
we have employed the NSC97a and NSC97e models de-
veloped by the Nijmegen group within the framework of
meson-exchange theory in refs. [48,49]. The reason for the
use of this NΛ interaction is simply the fact that we do not
have presently at our disposal the chiral NΛ interaction
derived by the Jülich-Bonn-Munich group in refs. [45–47].
This represents a weak point of the present work that,
however, we will try to solve in the future. After adjust-
ing the NNΛ force to reproduce the binding energy of the
Λ-hyperon in symmetric nuclear matter at saturation den-
sity, we have calculated the Λ separation energy in 41

Λ Ca,
91
Λ Zr and 209

Λ Pb. We have found that whereas the agree-
ment between the calculated separated energy and the ex-
perimental data improves in the case of the heavier nuclei
when the effect of the NNΛ is included, this force results to
be too much repulsive in the case of 41

Λ Ca and the lighter
hypernuclei. We note, however, that all the finite hypenu-
clei results were obtained without refitting the NNΛ force
and that a better agreement with experimental data for
the lighter hypernuclei could be found if the force is ad-
justed individually to each hypernucleus. Finally, we have
calculated the neutron star composition and EoS and have
determined the maximum mass predicted by the different
models considered. Our results have shown that when the
NNΛ force is included, the EoS becomes stiff enough such
that the resulting maximum mass is compatible with the
largest measured neutron star maximum mass of ∼ 2M�.
However, we have ignored the possible presence of other
hyperon species in the neutron star interior that could
change this conclusion, although we should point out that
hypothetical repulsive NNY, NYY and YYY forces could
lead to a similar one. Unfortunately, the lack of experimen-
tal information prevents currently any realistic attempt to
estimate the effect of such forces. More experimental ef-
forts are, therefore, needed. In particular, new information
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Strange dibaryons
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Fig. 1. The {o) representation for dibaryonic states as predicted by Oakes in 1963 [3]. The first (second) 
column corresponds to a linear (quadratic) formula for the masses. 

The H: interpreted as a dynamical effect can be considered either as a partner 
of the deuteron or as a six-quark bag. 

In SU(3) flavour symmetry the deuteron can be included in a multiplet obtained 
by reducing the product of the baryon octet by itself. The antidecuplet is the only 
representation which contains such an isospin singlet with strangeness zero. Then 
the H: with isospin f is a candidate for a strange partner of the deuteron. Such an 
hypothesis (fig. 1) was made by Oakes already in 1963 [3]. 

Later in 1977, Jaffe [4], in the MIT quark bag model, introducing colour degrees 
of freedom, predicted an octet of dibaryons (fig. 2) with masses slightly above those 
given by Oakes for the multiplets with the corresponding hypercharge. In this octet 
the dibaryon is considered as a six-quark bag. This model predicted also a singlet 
(AA) bound state which motivated and experiment at BNL [5], but such a state has 
not been found. 

In both cases there appears an isospin doublet S = - 1 with H: as a possible 
member and no negatively charged partner is expected. Furthermore the S = -2 
partner is expected (figs. 1 and 2) at a mass around 2.36-2.46 GeV/c’. 

In our experimental program we have searched for several possible strange 
dibaryonic states. In addition to the study presented here, we have also investigated 
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Fig. 2. The Ravour singlet and octet representations for dibaryonic states as predicted by Jaffe [4]. 

for the existence of an S = -1, Q = - 1 state in the reactions K-d + r+X- and 
r-d + K+X-, and an S = -2, Q = - 1 state in the reaction K-d + K+X+. In both 
cases no new state was found, and upper limits for the production cross sections 
were established [6, 71. 

2. The spectrometer 

The experimental set-up (fig. 3) together with the characteristics of the separated 
beam have been already fully described [8]. 

The momenta of the incident and the trigger particles are measured in two 
spectrometers with multiwire proportional chambers. They are identified by a time- 
of-flight measurement and by aerogel and water Cerenkov counters. 

The missing mass resolution is calculated from the experimental momenta errors; 
it has been checked in the reaction n’+p+ K+E+ at 1.4 GeV/c; the experimental 
value is a=3.5 MeV/c’ for the expected missing Z+. The resolutions computed at 
the H: (2130) mass are respectively: 9.1, 5.6 and 4.4 MeV/c” for reaction (1) at 1.4, 
1.06 and 0.92 GeV/c; 5.5, 3.4 and 3.2 MeV/c’ for reaction (2) at 1.4, 1.2 and 
1.06 GeV/ c. 

Since we can expect, from previous experiments [l], that the H: production is 
favoured at low momentum transfer, the acceptance of our apparatus is optimized 
for mesons produced in the very forward direction. The acceptance of the apparatus 
has been evaluated by Monte Carlo simulations. It is almost independent of the 
dibaryon mass in the range 2.0-2.3 GeV/c’. For an isotropical dibaryon production 

R.J. Oakes, PR 131 (1963) 2239 R.L. Jaffe, PRL 38 (1977) 195

SU(3) flavor symmetry {10∗} MIT quark bag model
strange partners of the deuteron
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Experimental evidence for threshold structure

MΣ+ + Mn = 2128.97 MeV MΣ0 + Mp = 2130.87 MeV
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Figure 4: The missing mass spectra for the constrained data (see text) from [6]
(upper panel) and [4] (lower panel). The solid curves show fits to the data where
the peak region has been excluded.
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where

L(θ∗K , φ) =
√
N+(φ) ·N−(φ+ π)

and R(θ∗K , φ) =
√
N−(φ) ·N+(φ+ π) .

(13)

Here, N±(φ) is the number of events with spin up (+) and
spin down(−) projectiles at the azimuthal angle φ. The spin
direction was flipped after every extraction cycle (120 s).
By multiplying the number of events on the opposite sides
of the detector and opposite spin states, systematic effects
from asymmetries in the detector acceptance are canceled
to first order. The data has been divided into eight bins in
the K+ azimuthal angle φ.

The beam polarization was determined with the known
analyzing power and the measured asymmetry in ~pp→ pp
elastic scattering. As a result we obtain P = (61.0±1.7) %.
For that the pp analyzing power was taken from the SAID
partial wave analysis [1]. The polar angular dependence
is in good agreement with SAID and with a previous
measurement by EDDA [9].

Possible systematic effects from different magnitudes
of the + and - beam polarization were investigated by
measuring both quantities independently. Within the ex-
perimental precision the two results, P+ = (66± 4)% and
P− = (57± 4)%, are compatible. An analysis of AN using
P± separately for the corresponding data samples yields
a systematic deviation to the analyis with Eq. (11) of
less than 30% of the statistical precision. Therefore, the
difference is neglected in the following analysis.

4 Results

4.1 Dalitz Plot

The Dalitz plot of the selected event sample is shown in
Fig. 3. It is corrected for the detector acceptance with
MC generated events. The complete kinematic acceptance
of the COSY-TOF detector is evident. The Dalitz plot
density is strongly enhanced at m2

pΛ = 4.53 GeV2/c4, i.e.

the NΣ threshold. This has been observed before [10,11]
and is usually interpreted as an NΣ–pΛ coupled channel
effect. The high resolution available in this measurement
makes an analysis of the shape, position and strength of
this structure interesting; however that is beyond the scope
of this report. It is analyzed in more detail in Refs. [12,13].

The enhancement of the production cross section close
to threshold from pΛ interactions, as discussed in Sec. 2, is
clearly visible at low mpΛ values. The increasing differential
cross section for decreasing mKΛ (see Fig. 3) can be ex-
plained by the influence of the resonances N(1710) and/or
N(1720) [3, 4]. In the Dalitz plot these are located around
m2
KΛ ≈ 2.93 GeV2/c4. However, due to their width of more

than 100 MeV/c2 they do not appear as narrow structures.
For a theoretical description see, e.g., Refs. [14, 15].

4.2 Effective Scattering Length

In Fig. 4 the pΛ invariant mass spectrum is shown. Since
the time integrated luminosity of the event sample is not
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Fig. 3. The Dalitz plot of the reaction. Lighter colors indicate
higher yield densities. The thresholds of the NΣ and KΣ chan-
nels are indicated by arrows, respectively. The region of the
N(1710) and N(1720) resonances is indicated by a solid line.
The dashed line marks the partition of the spectrum applied
for the analysis discussed in Sec. 4.2

 [MeV/c^2]Λp m
2060 2080 2100 2120 2140 2160 2180 2200 2220 2240 2260

)2
N

/A
/(

2M
eV

/c

500

1000

1500

2000

2500

3000

3500

]2 [MeV/cΛp m
2060 2080 2100 2120 2140 2160 2180 2200 2220 2240 2260

A

0
0.1
0.2

0

Fig. 4. The spectrum of mpΛ corrected for acceptance (A) as
it is given on the bottom. The two vertical lines indicate the
NΣ thresholds. An arbitrarily scaled phase space distribution
(dashed line) is shown to guide the eye. The solid line is a fit
to the data as described in the text.

needed for this analysis, only the number of measured
events (N) scaled with the detector acceptance times re-
construction efficiency (A) is given. The quantity A has
been determined with Monte Carlo studies and is included
at the bottom of the figure. It is noteworthy, that the
detector acceptance is nearly constant over a wide mpΛ

range but varies between 27 % and 10% close to threshold.

For comparison, an arbitrarily scaled three-body S-
wave phase-space distribution is shown with a solid line.

Exploring the NΛ–NΣ system with high precision correlation techniques ALICE Collaboration
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Figure 1: Upper panels: pΛ correlation function (circles) with statistical (vertical bars) and systematic (grey
boxes) uncertainties. Middle panels: zoom on the region with the cusp-like signal at k∗ = 289 MeV/c due to the
NΣ↔ NΛ coupling. Lower panels: The deviation between data and predictions, expressed in terms of nσ . The fit
is performed using NLO13 (red) and NLO19 (cyan) χEFT potentials with a cut-off parameter of 600 MeV [2, 3]
and using a cubic baseline (dark grey). The residual p–Ξ−⊕ p–Ξ0 (pink) and p–Σ0 (royal blue) correlations are
modelled using, respectively, a lattice potential from the HAL QCD collaboration [37,54] and a χEFT potential [2].
Both contributions are plotted relative to the baseline, while in panels b) and d) the strong interaction of p–Σ0 is
neglected.

the relative amount of NΣ and pΛ initial state pairs leading to the final state (measured) pΛ pairs. The
amount of initial state pairs was fixed by the above-mentioned Σ:Λ ratio, enabling the direct test of the
strong interaction. The LO chiral calculation [1], predicting a smaller NΣ cusp with respect to the NLO,
was already ruled out from scattering data, and the results shown in Fig. 1 confirm this. The updated
NLO19 calculation with a cut-off parameter of 600 MeV gives the best description of the pΛ correlation
function, in particular of the cusp, independently of the assumed pΣ0 interaction and of the baseline. The
assumption of a constant baseline leads to the same conclusions and similar nσ values. For both NLO13
and NLO19 the best agreement with the data is achieved at the same cut-off value (550–650 MeV)
which also provide the best description of the available scattering and hypertriton data [2, 3]. However,
unlike the previously existing experimental data, the present results have the sensitivity to discriminate
between the NLO13 and NLO19 version of χEFT, showing a slight preference towards the latter. The
best nσ = 3.7 achieved by χEFT suggests that further improvements in the theory are needed. The main
discrepancy stems from the slight difference in the slope of the experimental and theoretical correlations
at low k∗. The χEFT NLO19 potential seems to still predict a too large two-body pΛ attraction with
respect to the present experimental data. Possibly, an even weaker coupling to NΣ could be needed in
order to reduce the disagreement, but it would lead to an overestimation of the Λ single-particle potential
in nuclear matter, necessitating an increased three-body repulsion that can be modelled approximately
by the theory. In turn, this would disfavour the production of these strange hadrons in neutron stars and
result in a stiffer EoS [4]. Nevertheless, the same kinematic region at low k∗ is influenced by the p–Σ0

residual correlation and the compatibility to the data can be improved by assuming a weaker (flat) pΣ0

interaction (nσ = 1.6). At present the pΛ and p–Σ0 signals cannot be disentangled in a model independent
way due to the insufficient precision of the direct p–Σ0 measurement [31]. The situation will improve in
the upcoming LHC Run 3 due to the expected increase in statistics [57].

In conclusion, two-particle correlation techniques were used to study the final state interaction in the
NΣ↔ NΛ coupled system. This was achieved by studying the pΛ correlation function at low relative

6

K−d → π−Λp pp → K +Λp Λp corr. in pp coll.
T.T. Tan, PRL 7 (1969) 395 M. Röder et al., EPJA 49 (2013) 157 S. Acharya [ALICE Coll.],
O. Braun et al., NPB 124 (1977) 45 arXiv:2104.04427

“ordinary” threshold effect? bound state? virtual state (np 1S0) ?
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χ2 for Σ−p and Σ+p data

ΛN result near ΣN threshold is primarily constrained by near-threshold
(20) Σ−p data

reaction NLO13 NLO19 Jülich ’04 NSC97f (ND)

500 550 600 650 500 550 600 650

Σ−p → Λn 3.7 3.9 4.1 4.4 4.7 4.7 4.0 4.4 8.3 3.9 (4.3)
Σ−p → Σ0n 6.1 5.8 5.8 5.7 5.5 5.5 6.0 5.7 6.4 6.0 (5.5)
Σ−p → Σ−p 2.0 1.8 1.9 1.9 3.0 2.9 2.2 1.9 1.6 2.3 (3.6)
Σ+p → Σ+p 0.3 0.4 0.5 0.3 0.3 0.4 0.4 0.3 0.1 0.2 (0.1)

rR 0.1 0.2 0.1 0.2 1.1 0.7 0.1 0.5 53.6 0.0 (0.9)

total χ2 12.2 12.0 12.3 12.5 14.6 14.2 12.7 12.8 70 [16.4] 12.4 (14.4)

(
rR =

1

4

σs(Σ−p → Σ0n)

σs(Σ−p → Λn) + σs(Σ−p → Σ0n)
+

3

4

σt (Σ−p → Σ0n)

σt (Σ−p → Λn) + σt (Σ−p → Σ0n)

)

best description of near-threshold ΣN data: NLO13, NLO19 (600,650), NSC97a-f
⇒ χ2 = 12− 13

J.H., U.-G. Meißner, arXiv:2105.00836⇒ search for ΣN poles in complex plane
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Poles in the complex qΣN plane

• 2nd quadrant (sheet II, bt): unstable bound state • 3rd quadrant (sheet IV, tb): inelastic virtual state
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• NLO13 � NLO19 N Nijmegen NSC97b-f H Jülich ’04 × Nijmegen ND (1977)

NLO13: E = 2131.90− i1.39 · · · 2131.25− i3.01 MeV
NLO19: E = 2131.73− i1.11 · · · 2131.35− i0.00 MeV
NSC97: E = 2133.04− i3.80 · · · 2133.79− i3.53 MeV

Thresholds: Σ+n (2128.97) Σ0p (2130.87)

⇒ bound state (dibaryon) – but above threshold!
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Summary

Hyperon-nucleon interaction constructed within chiral EFT

Approach is based on a modified Weinberg power counting, analogous to
applications for NN scattering

The potential (contact terms, pseudoscalar-meson exchanges) is derived
imposing SU(3)f constraints

S = −1: Excellent results at next-to-leading order (NLO)
Λp, ΣN low-energy data are reproduced with a quality comparable to
phenomenological models

S = −1 dibaryon: strong evidence for its existence
– but not as ideal textbook (Breit-Wigner type) resonance

Hypernuclei

for very light hypernuclei three-body forces should be small (3
ΛH) or moderate

(4
ΛH, 4

ΛHe)
needs to be quantified/confirmed by explicit inclusion of 3BFs
5
ΛHe, etc. ... effects of three-body forces could be more significant

Study of charge-symmetry breaking in 4
ΛH – 4

ΛHe is under way

Λ hypernuclei - data with higher precision are needed to quantify 3BFs

Johann Haidenbauer Hyper-nucleon interaction
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ΛN interaction: bulk properties are known
Λp cross section Λ hypernuclei
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FIG. 10 Spectroscopy of 12
ΛB from the E05-115 and E01-011

experiments. The area below the black line is the accidental
background. From Tang et al., 2014.

lent to a rotation plus a shift of the spectrometer so that
scattered electrons ≤ 4.5◦ hit the HES yokes and thus do
not enter the spectrometer acceptance. This angle was
chosen based on a figure of merit optimization between
hypernuclear yield and accidental background rate. The
tilt improved the true data rate by an order of magni-
tude while reducing accidental background. The beam
and spectrometer parameters are tabulated by Tang et
al. (2014). The experimental energy resolution to spe-
cific states was approximately 600 keV FWHM.

The 12
ΛB spectrum obtained in these experiments on

a 12C target is shown in Fig. 10, demonstrating the im-
proved resolution in the more recent E05-115 experiment
with respect to that in the older one E01-011 and also
with respect to the Hall A experiment E94-107 (Iodice
et al., 2007). In the upper panel of the figure, peaks 1,
2, 3, and 4 result from the pN → sΛ transition strength,
with peak 1 standing for the 12

ΛB g.s. doublet which to
a very good approximation is based on the 11B g.s. core
state. The other three peaks correspond to coupling the
sΛ hyperon to known excited levels in 11B. Peaks 5, 6,
7, and 8 result from the pN → pΛ transition strength
which extends further up into the continuum. Similar
spectra were reported for the charge-symmetric hyper-
nucleus 12

ΛC in (π+,K+) and (K−stop, π
−) experiments at

KEK (Hotchi et al., 2001) and at DAΦNE (Agnello et al.,
2005b), respectively. Yet, the JLab (e, e′K+) experiment
provides by far the most refined A= 12 Λ hypernuclear
excitation spectrum.

Very recently, the spectrum of another p-shell hypernu-
cleus, 10

ΛBe, was obtained in a JLab Hall C (e, e′K+) ex-
periment (Gogami et al., 2016a). This experiment gives
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FIG. 11 Energy levels of the Λ single-particle major shells
in A

ΛZ hypernuclei as a function of A−2/3. The curves are
obtained from a standard Woods-Saxon potential VWS repre-
senting the Λ-nucleus interaction with depth V0=−30.05 MeV,
radius R=r0A

1/3, where r0=1.165 fm, and diffusivity a =
0.6 fm. Updated from Millener, Dover, and Gal, 1988.

a BΛ value for a hypernucleus for which there are only
a few emulsion events (see Table I). It shows four clear
sΛ peaks as expected from the proton removal strength
from 10B [see Sec. I.C and Fig. 3 of Millener (2012)].

The (e, e′K+) experiments in Hall A were performed
using two existing high-relsolution (long flight path)
spectrometers and used a much higher electron-beam en-
ergy of ∼ 3.7 GeV to increase the K+ survival time. The
two essential features of the setup were the placement of
superconducting septum magnets before each spectrom-
eter to be able to take data at 6◦ and a ring-imaging
Cherenkov detector to provide unambiguous K+ identi-
fication. Data were taken using targets of 12C (Iodice
et al., 2007), 16O (Cusanno et al., 2009), and 9Be (Urci-
uoli et al., 2015). In particular, BΛ = 13.76 ± 0.16 MeV
was determined for 16

ΛN by using the Λ and Σ0 peaks
from the elementary (e, e′K+) reaction on the hydrogen
in a waterfall target for calibration.

6. Single-particle structure

Taking the positions of the Λ major shells as observed
in the (π+,K+) and other reactions, the Λ single-particle
energies show a very smooth A-dependence, which can be
reproduced by a simple Woods-Saxon potential VWS, as
shown in Fig. 11 for a data set that includes information
up to 208

ΛPb (Hasegawa et al., 1996). The data used in
the construction of Fig. 11 is given in Table IV. Because
the BΛ values in Table IV differ in several respects from
the values given in the original papers and reviews [see,
e.g., Hashimoto and Tamura (2006)], some explanation
is needed.

The most important overall change in the tabulated
BΛ values arises from the fact that the KEK (π+,K+)
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YN scattering lengths [fm]

NLO13 NLO19 Jülich ’04 NSC97f experiment∗

Λ [MeV] 500 · · · 650 500 · · · 650

aΛp
s −2.91 · · · −2.90 −2.91 · · · −2.90 −2.56 −2.51 −1.8+2.3

−4.2

aΛp
t −1.61 · · · −1.51 −1.52 · · · −1.40 −1.66 −1.75 −1.6+1.1

−0.8

aΣ+p
s −3.60 · · · −3.46 −3.90 · · · −3.43 −4.71 −4.35

aΣ+p
t 0.49 · · · 0.48 0.48 · · · 0.42 0.29 −0.25

χ2 15.7 · · · 16.8 16.0 · · · 18.1 ≈ 22 16.7

B(3
ΛH) −2.30 · · · −2.33 −2.32 · · · −2.32 −2.27 −2.30 −2.354(50)

∗G. Alexander et al., PR 173 (1968) 1452

Note: B(3
ΛH) is used as additional constraint in EFT and Jülich ’04

Λp data alone do not allow to disentangle 1S0 (s) and 3S1 (t) contributions

(a, r in fm; B in MeV)
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Λ and Σ in infinite nuclear matter

non-relativistic lowest order Brueckner theory (Bethe-Goldstone equation):

〈YN|GYN(ζ)|YN〉 = 〈YN|V |YN〉

+
∑
Y ′N

〈YN|V |Y ′N〉 〈Y ′N| Q
ζ − H0

|Y ′N〉 〈Y ′N|GYN(ζ)|YN〉

Q ... Pauli projection operator

ζ = EY (pY ) + EN(pN)

Eα(pα) = Mα +
p2
α

2Mα
+ Uα(pα), α = Λ,Σ, N

Uα ... single-particle potential

UY (pY ) =

∫
pN≤kF

d3pN 〈YN|GYN(ζ(UY ))|YN〉

BY (∞) = −UY (pY = 0) - evaluated at saturation point of nuclear matter

⇒ J.H., U.-G. Meißner, NPA 936 (2015) 29; S. Petschauer, et al., EPJA 52 (2016) 15
J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91
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Status - hypertriton
3
ΛH→ π− + p + d , → π− + 3He

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
EΛ (MeV)

π-
+p+d

π-
+

3
He

combined

Chaudhari (1968)

Keyes (1970)

Bohm (1968)

Juric (1973)

STAR (2019)

Gajewski (1967)

benchmark: (M. Jurič et al., 1973): 0.13± 0.05 MeV

STAR (J. Adam et al., Nature Phys. 16 (2020) 409) (3
ΛH+3

Λ̄
H̄): 0.41± 0.12± 0.11 MeV

(separation energy EΛ = BΛ − Bd )
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Three-nucleon forces: Explicit inclusion of the ∆(1232)

Explicit treatment of the ∆ (Krebs, Gasparyan, Epelbaum, PRC 98 (2018) 014003):

N N N

N N N

✉ ② ✉ ⇒

N N N

N N N

✉ ✐ ✉ +

N N N

N N N

✉ ✉
✉ ✉

(ci) (ci)

∆

N2LO N2LO NLO

LECs (from πN) c1 c2 c3 c4

∆-less approach -0.75 3.49 -4.77 3.34
∆-full approach -0.75 1.90 -1.78 1.50
∆ contribution 0 2.81 -2.81 1.40

more natural size of LECs

better convergence of EFT expansion (3NF from ∆(1232) appears at NLO!)

applicability at higher energies
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